Perceived glossiness in high dynamic range scenes.

نویسندگان

  • Katja Doerschner
  • Laurence T Maloney
  • Huseyin Boyaci
چکیده

We investigated how spatial pattern, background, and dynamic range affect perceived gloss in brightly lit real scenes. Observers viewed spherical objects against uniform backgrounds. There were three possible objects. Two were black matte spheres with circular matte white dots painted on them (matte-dot spheres). The third sphere was painted glossy black (glossy black sphere). Backgrounds were either black or white matte, and observers saw each of the objects in turn on each background. Scenes were illuminated by an intense collimated source. On each trial, observers matched the apparent albedo of the sphere to an albedo reference scale and its apparent gloss to a gloss reference scale. We found that matte-dot spheres and the black glossy sphere were perceived as glossy on both backgrounds. All spheres were judged to be significantly glossier when in front of the black background. In contrast with previous research using conventional computer displays, we find that background markedly affects perceived gloss. This finding is surprising because darker surfaces are normally perceived as glossier (F. Pellacini, J. A. Ferwerda, & D. P. Greenberg, 2000). We conjecture that there are cues to surface material signaling glossiness present in high dynamic range scenes that are absent or weak in scenes presented using conventional computer displays.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Self-Shadowing Using Image-Based Lighting on Glossy Surfaces

In this paper we present a novel natural illumination approach for real-time rasterization-based rendering with environment map-based high dynamic range lighting. Our approach allows to use all kinds of glossiness values for surfaces, ranging continuously from completely diffuse up to mirror-like glossiness. This is achieved by combining cosine-based diffuse, glossy and mirror reflection models...

متن کامل

Increasing the Complexity of the Illumination May Reduce Gloss Constancy

We examined in which way gradual changes in the geometric structure of the illumination affect the perceived glossiness of a surface. The test stimuli were computer-generated three-dimensional scenes with a single test object that was illuminated by three point light sources, whose relative positions in space were systematically varied. In the first experiment, the subjects were asked to adjust...

متن کامل

Estimating the glossiness transfer function induced by illumination change and testing its transitivity.

The light reflected from a glossy surface depends on the reflectance properties of that surface as well as the flow of light in the scene, the light field. We asked four observers to compare the glossiness of pairs of surfaces under two different real-word light fields, and used this data to estimate a transfer function that captures how perceived glossiness is remapped in changing from one rea...

متن کامل

Testing tone mapping operators with human-perceived reality

A number of successful tone mapping operators for contrast compression have been proposed due to the need to visualize high dynamic range (HDR) images on low dynamic range (LDR) devices. They were inspired by fields as diverse as image processing, photographic practice, and modeling of the human visual systems (HVS). The variety of approaches calls for a systematic perceptual evaluation of thei...

متن کامل

Human cortical areas involved in perception of surface glossiness

Glossiness is the visual appearance of an object's surface as defined by its surface reflectance properties. Despite its ecological importance, little is known about the neural substrates underlying its perception. In this study, we performed the first human neuroimaging experiments that directly investigated where the processing of glossiness resides in the visual cortex. First, we investigate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of vision

دوره 10 9  شماره 

صفحات  -

تاریخ انتشار 2010